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UBIQUITOUS PARALLEL COMPUTING
FROM BERKELEY, ILLINOIS,

AND STANFORD
..........................................................................................................................................................................................................................

THE PARLAB AT BERKELEY, UPCRC-ILLINOIS, AND THE PERVASIVE PARALLEL LABORATORY

AT STANFORD ARE STUDYING HOW TO MAKE PARALLEL PROGRAMMING SUCCEED

GIVEN INDUSTRY’S RECENT SHIFT TO MULTICORE COMPUTING. ALL THREE CENTERS

ASSUME THAT FUTURE MICROPROCESSORS WILL HAVE HUNDREDS OF CORES AND ARE

WORKING ON APPLICATIONS, PROGRAMMING ENVIRONMENTS, AND ARCHITECTURES THAT

WILL MEET THIS CHALLENGE. THIS ARTICLE BRIEFLY SURVEYS THE SIMILARITIES AND

DIFFERENCE IN THEIR RESEARCH.

......For more than three decades, the
microelectronics industry has followed the
trajectory set by Moore’s Law. The micro-
processor industry has leveraged this evolu-
tion to increase uniprocessor performance
by decreasing cycle time and increasing the
average number of executed instructions per
cycle (IPC).

This evolution stopped a few years ago,
however. Power constraints are resulting in
stagnant clock rates, and new microarchitec-
ture designs yield limited IPC improve-
ments. Instead, the industry uses continued
increases in transistor counts to populate
chips with an increasing number of cores—
multiple independent processors. This
change has profound implications for the
IT industry. In the past, each generation of
hardware brought increased performance on
existing applications, with no code rewrite,
and enabled new, performance-hungry appli-
cations. This is still true but only for

applications written to run in parallel and
to scale to an increasing number of cores.

This is less of a problem for server appli-
cations, which can leverage parallelism by
serving a larger number of clients or by con-
solidating server functions onto fewer sys-
tems. Parallelism for client and mobile
applications is harder because they are turn-
around oriented, and the use of parallelism
to reduce response time requires more algo-
rithmic work. Furthermore, mobile systems
are power constrained, and improved wire-
less connectivity enables shifting computa-
tions to the server (or the cloud).

Given these conditions, can we identify
applications that will run on clients and will
require significant added compute power?
Can we develop a programming environment
that allows a large programmer community
to develop parallel codes for such applica-
tions? In addition, can multicore architectures
and their software scale to the hundreds of
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cores that hardware will be able to support in
a decade? We believe we can answer such
questions positively, but a timely solution
will require a significant acceleration of the
transfer of research ideas into practice.

Research on such topics is ongoing at the
Parallel Computing Laboratory (ParLab) at
the University of California, Berkeley, the
Universal Parallel Computing Research
Center at the University of Illinois, Urbana-
Champaign (UPCRC-Illinois), and Stanford
University’s Pervasive Parallelism Laboratory
(PPL). All three centers are parallelizing spe-
cific applications, rather than developing
technology for undefined future applications
as is traditional in research. All focus primar-
ily on client computing, designing tech-
nology that can work well up through
hundreds of cores. All three also reject a
single-solution approach, assuming instead
that software is developed by teams of pro-
grammers with different specialties requiring
different sets of tools. Even though the work
at the three centers bears many similarities,
they focus on different programming envi-
ronments, approaches for the production of
parallel code, and architectural supports.

ParLab at Berkeley
Recognizing the difficulty of the multi-

core challenge, Intel and Microsoft invited
25 universities to propose parallel computing
centers. They selected the Berkeley ParLab in
2008. Since then, another six companies have
joined Intel and Microsoft as affiliates: Na-
tional Instruments, NEC, Nokia, NVIDIA,
Samsung, and Sun Microsystems. Em-
bracing open source software and welcom-
ing all collaborators, the ParLab is a team
of 50 PhD students and a dozen faculty
leaders from many fields who work together
toward making parallel computing produc-
tive, performant, energy-efficient, scalable,
portable, and at least as correct as sequential
programs.1

Patterns and frameworks
Many presume the challenge is for today’s

programmers to become efficient parallel
programmers with only modest training.
Our goal is to enable the productive develop-
ment of efficient parallel programs by tomor-
row’s programmers. We believe future

programmers will be either domain experts
or sophisticated computer scientists because
few domain experts have the time to develop
performance programming skills and few
computer scientists have the time to develop
domain expertise. The latter group will create
frameworks and software stacks that enable
domain experts to develop applications with-
out understanding details of the underlying
platforms.

We believe that software architecture is the
key to designing parallel programs, and the
key to these programs’ efficient implementa-
tion is frameworks. In our approach, the
basis of both is design patterns and a pattern
language. Borrowed from civil architecture,
design pattern means solutions to recurring
design problems that domain experts learn.
A pattern language is an organized way of
navigating through a collection of design pat-
terns to produce a design. Our pattern lan-
guage consists of a series of computational
patterns drawn largely from 13 motifs.1,2

We see these as the fundamental software
building blocks that are composed using a se-
ries of structural patterns drawn from com-
mon software architectural styles.

A software architecture is then the hierar-
chical composition of computational and
structural patterns, which we refine using
lower-level design patterns. This software
architecture and its refinement, although use-
ful, are entirely conceptual. To implement
the software, we rely on frameworks. We
define a pattern-oriented software framework
as an environment built around a software
architecture in which customization is only
allowed in harmony with the framework’s
architecture. For example, if based on the
pipe-and-filter style, customization involves
only modifying pipes or filters.

We envision a two-layer software stack. In
the productivity layer, domain experts princi-
pally develop applications using application
frameworks. In the efficiency layer, computer
scientists develop these high-level application
frameworks as well as other supporting soft-
ware frameworks in the stack. Application
frameworks have two advantages. First, the
application programmer works within a
familiar environment using concepts drawn
from the application domain. Second, we
prevent expression of parallel programming’s
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many annoying problems, such as nondeter-
minism, races, deadlock, starvation, and so
on. To reduce such problems inside these
frameworks, we use dynamic testing to exe-
cute problematic schedules.

SEJITS
Framework writers are more productive

when they write in high-level productivity-
layer languages (PLLs) such as Python or
Ruby with abstractions that match the appli-
cation domain; studies have reported factors
of three to 10 fewer lines of code and three
to five times faster development when using
PLLs rather than efficiency-level languages
(ELLs) such as C++ or Java. However, PLL
performance might be orders of magnitude
worse than ELL code, in part due to inter-
preted execution.

We’re developing a new approach to
bridge the gap between PLLs and ELLs.
Modern scripting languages such as Python
and Ruby include facilities to allow late bind-
ing of an ELL module to execute a PLL func-
tion. In particular, introspection lets a
function inspect its own abstract syntax tree
(AST) when first called to determine whether
the AST can be transformed into one that
matches a computation performed by some
ELL module. If it can, PLL metaprogram-
ming support then specializes the function
at runtime by generating, compiling, and
linking the ELL code to the running PLL in-
terpreter. Indeed, the ELL code generation
might include syntax-directed translation of
the AST into the ELL. If the AST cannot
be matched to an existing ELL module or
the module targets the wrong hardware, the
PLL interpreter just continues executing as
usual. This approach preserves portability be-
cause it doesn’t modify the source PLL
program.

Although just-in-time (JIT) code genera-
tion and specialization is well established
with Java and Microsoft .NET, our approach
selectively specializes only those functions
that have a matching ELL code generator,
rather than having to generate code dynami-
cally for the entire PLL. Also, the introspec-
tion and metaprogramming facilities let us
embed the specialization machinery in the
PLL directly rather than having to modify
the PLL interpreter. Hence, we call our

approach selective, embedded, just-in-time
specialization (SEJITS).3

SEJITS helps domain experts use the
work of efficiency programmers. Efficiency
programmers can ‘‘drop’’ new modules spe-
cialized for particular computations into the
SEJITS framework, which will make runtime
decisions when to use it. By separating the
concerns of ELL and PLL programmers,
SEJITS lets them concentrate on their re-
spective specialties.

An example is Copperhead, which is a
data-parallel Python dialect. Every Copper-
head program is valid Python, executable
by the Python interpreter. However, when
it consists of data parallel operations taken
from a Python library, the Copperhead run-
time specializes the resulting program into
efficient parallel code. Preliminary experi-
ments show encouraging efficiency, while en-
abling parallel programming at a much
higher level of abstraction. Our goal is to
specialize an entire image processing compu-
tation, such as in Figure 1.

Platforms and applications
We believe future applications will have

footholds in both mobile clients and cloud
computing. We’re investigating parallel
browsers because many client applications
are downloaded and run inside a browser.4

We note that both client and cloud are
concerned with responsiveness and power ef-
ficiency. The application client challenge is
responsiveness while preserving battery life
given various platforms. The application
cloud challenge is responsiveness and
throughput while minimizing cost in a pay-
as-you-go environment.5 In addition, cloud
computing providers want to lower costs,
which are primarily power and cooling.

To illustrate the client/cloud split, sup-
pose a domain expert wants to create an ap-
plication that suggests the name of a person
walking toward you. Once it has identified
this person, the client device whispers the in-
formation to you. Responsiveness is key, as
seconds separate timely from irrelevant.
Depending on wireless connectivity and bat-
tery state, a ‘‘name whisperer’’ could send
photos to the cloud to do the search or the
client could search locally from a cache of
people you’ve met.
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Object recognition systems
Clearly, an object recognition system will

be a major component of such an applica-
tion. Figure 1 shows the computational
flow of a local object recognizer,6 which
gets good results on vision benchmarks.
Although high quality, it is computationally
intensive; it takes 5.5 minutes to identify
five kinds of objects in a 0.15-Mbyte image,
which is far too slow for our application.

The main goal of an application frame-
work is to help application developers design
their applications efficiently. For computer
vision, computations include image contour
detection, texture extraction, image segmen-
tation, feature extraction, classification, clus-
tering, dimensionality reduction, and so on.
Many algorithms have been proposed for
these computations, each with different
trade-offs. Each method corresponds to an
application pattern. The application frame-
work integrates these patterns. As a result,
the application developers can compose
their applications by arranging the computa-
tions together and let the framework figure
out which algorithm to use, how to set param-
eters for the algorithm, and how to communi-
cate between different computations.

Figure 1 shows the object recognizer’s
four main computations. We can try out
application patterns for different contour
detectors, image segmentors, feature extrac-
tors, and trainer/classifier and find the most
accurate composition. An alternative is to
only specify the computation’s composition
and let the application framework choose
the proper application pattern to realize the
computation.

We choose application patterns manually.
The contour detector, for example, uses
75 percent of the time. Among all contour
detectors, our version of the gPb algorithm
achieves the highest accuracy (see Figure 1).
The major computational bottlenecks are
the localcue computation and the generalized
eigensolver. For the localcue computation,
we replaced the explicit histogram accumula-
tion by integral image and applied parallel
scan for realizing integral image. For the gen-
eralized eigensolver, we proposed a highly
parallel SpMV kernel and investigated
appropriate reorthogonal approaches for the
Lanczos algorithm. By selecting good pat-
terns to form a proper software architecture
that reveals parallelism and then exploring
appropriate algorithmic approaches and
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parallel implementations within that soft-
ware architecture, we accelerated contour
execution time by 140 times, from
4.2 minutes to 1.8 seconds on a GPU.7

Performance measurement and autotuning
The prevailing hardware trend of dynam-

ically improving performance with little soft-
ware visibility has become counterproductive;
software must adapt if parallel programs
are going to be portable, fast, and energy
efficient. Hence, parallel programs must be
able to understand and measure any com-
puter so that they can adapt effectively.
This perspective suggests architectures with
transparent performance and energy con-
sumption and Standard Hardware Operation
Trackers (SHOT).8 SHOT enables parallel
programming environments to deliver porta-
bility, performance, and energy efficiency.
For example, we used SHOT to examine
alternative data structures for the image con-
tour detector, by examining realized memory
bandwidth versus the data layout.

Autotuners produce high-quality code by
generating many variants and measuring
each variant on the target platform. The
search process tirelessly tries many unusual
variants of a particular routine. Unlike libra-
ries, autotuners also allow tuning to the par-
ticular problem size. Autotuners also preserve
clarity and help portability by reducing the
temptation to mangle the source code to im-
prove performance for a particular computer.

The Copperhead specialization machinery
has built-in heuristics that guide decisions
about data layout, parallelization strategy,
execution configuration, and so on. Autotun-
ing lets the Copperhead specializer gain
efficiency portably because the optimal execu-
tion strategy differs by platform.

Future architecture and operating system
We expect the client hardware of 2020

will contain hundreds of cores in replicated
hardware tiles. Each tile will contain one pro-
cessor designed for instruction-level parallel-
ism for sequential code and a descendant of
vector and GPU architectures for data-level
parallelism. Task-level parallelism occurs
across the tiles. The number of tiles per
chip varies depending on cost-performance
goals. Thus, although the tiles will be

identical for ease of design and fabrication,
the chip supports heterogeneous parallelism.
The memory hierarchy will be a hybrid of
traditional caches and software-controlled
scratchpads.9 We believe that such mecha-
nisms for mobile clients will also aid servers
in the cloud.

Because we rarely run just one program,
the hardware will partition to provide
performance isolation and security between
multiprogrammed applications. Partitioning
suggests restructuring systems services as a
set of interacting distributed components.
The resulting deconstructed Tessellation
operating system implements scheduling
and resource management of partitions.10

Applications and operating system services
(such as file systems) run within partitions.
Partitions are lightweight and can be resized
or suspended with overhead comparable to a
context swap. The operating system kernel is
a thin layer responsible for only the coarse-
grained scheduling and assignment of resour-
ces to partitions and secure restricted com-
munications among partitions. It avoids the
performance issues with traditional micro-
kernels by providing operating system ser-
vices through secure messaging to spatially
coresident service partitions, rather than con-
text-switching to time-multiplexed service
processes. User-level schedulers are used
within a single partition to schedule applica-
tion tasks onto processors across potentially
multiple different libraries and frameworks,
and the Lithe layer offers an interface to
schedule independent libraries efficiently.11

ParLab today
We have identified the architectural and

software patterns and are using them in the
development of applications in vision,
music, health, speech, and browsers. These
applications drive the rest of the research.
We have two SEJITS prototypes and auto-
tuners for several motifs and architectures.
We have a 64-core implementation of our
tiled architecture in field-programmable
gate arrays that we use for architectural
experiments, including the first SHOT im-
plementation. FPGAs afforded a 250 times
increase in simulation time over soft-
ware simulators, and the lengthier experi-
ments often led to opposite conclusions.12
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The initial Tessellation operating system boots
on our prototype and can create a partition,
and Lithe has demonstrated efficient composi-
tion of code written using OpenMP libraries.

UPCRC-Illinois
The Universal Parallel Computing Re-

search Center at the University of Illinois,
Urbana-Champaign was established in
2008 as a result of the same competition
that led to the ParLab. UPCRC-Illinois
involves about 50 faculty and students and
is codirected by Wen-mei Hwu and Marc
Snir. It is one of several major projects in
parallel computing at Illinois (http://parallel.
illinois.edu), continuing a tradition that
started with the Illiac projects.

Our work on applications focuses on the
creation of compelling 3D Web applications
and human-centered interfaces. We have a
strong focus on programming language,
compiler, and runtime technologies aimed
at supporting parallel programming models
that provide simple, sequential-by-default
semantics with parallel performance models
and that avoid concurrency bugs. Our archi-
tecture work is focused on efficiently
supporting shared memory with many hun-
dreds of cores. (The full list of UPCRC-
Illinois ongoing projects is available at
http://www.upcrc.illinois.edu.)

Applications
The 3D Internet will enable many new

compelling applications. For example, the
Teeve 3D teleimmersion framework and its
descendants have supported remote collabo-
rative dancing, remote Tai-Chi training, ma-
nipulation of virtual archeological artifacts,
training of wheelchair-bound basketball play-
ers, and gaming.13 Applications are limited
by a low frame rate and inability to handle
visually noisy environments. Broad real-
time usage in areas such as multiplayer gam-
ing or telemedicine requires several orders of
magnitude performance improvements in
tasks such as the synthesis of 3D models
from multiple 2D images; the recognition
of faces, facial expressions, objects, and
gestures; and the rendering of dynamically
created synthetic environments. Such tasks
must execute on mobile clients to reduce
the impact of Internet latencies on

real-time interactions. Many of the same
tasks will be at the core of future human-
centered ubiquitous computing environ-
ments that can understand human behavior
and anticipate needs, but this will require
significant technical progress.

We’re developing new parallel algorithms
for these tasks that can achieve required per-
formance levels. We have implemented new
parallel algorithms for depth image-based
rendering—creating a virtual view of a 3D
object from a new angle based on informa-
tion from a depth camera and multiple opti-
cal cameras—and shown speedups of more
than 74 times. We’ve implemented parallel
versions of algorithms for analyzing video
streams, demonstrating speedups in excess
of 400 times on a hand-tracking task and
for B-spline image interpolation. The algo-
rithms have been used for the NIST TREC
Video Retrieval Challenge, which requires
the identification of specific events in surveil-
lance videos. The complete application
achieves speedups in excess of 13 times.
We collected the algorithms into the publicly
available Vivid library (http://libvivid.
sourceforge.net) in the form of parallel
functions callable from Python code.14

Spatial data structures form the backbone
of many computationally intensive 3D appli-
cations and data-mining and machine-
learning algorithms. To support such appli-
cations, we’re developing ParKD, a compre-
hensive framework for parallelized spatial
queries and updates through scalable, parallel
k-D tree implementations. ParKD algo-
rithms speed up the generation of k-D trees
and generate k-D trees that enable efficient
parallel rendering. We plan to integrate all
these components into an end-to-end teleim-
mersive application.

Performance constraints of mobile plat-
forms restrict the functionality of mobile
application and lengthen their development
time. For example, to achieve high-quality,
real-time graphics in interactive games, we
need to precompute data structures used
for rendering. This restricts the number of
supported scenarios and increases develop-
ment time and cost. Less constrained multi-
player games use lower quality graphics. An
added advantage of our work will be
enabling applications that provide better
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user experience and that can be developed
faster.

Parallelism can also help achieve other
goals, such as better quality of service and
improved security. Our work on Teeve
shows how the use of multiple cores can sim-
plify QoS provision for multiple concurrent
real-time tasks. Our work on the Opus Palla-
dianum (OP) Web browser shows that paral-
lelism both improves browser performance
and reduces vulnerabilities by using
compartmentalization.15

Programming environment
We distinguish between concurrent

programming that focuses on problems
where concurrency is part of the specification
and parallel programming that focuses on
problems where concurrent execution is used
only for improving a computation’s perfor-
mance. Reactive systems (such as an operating
system, GUI, or online transaction-processing
system) where computations (or transactions)
are triggered by nondeterministic, possibly
concurrent, requests or events use concurrent
programming. Parallel programming is used
in transformational systems, such as in scien-
tific computing or signal processing, where
an initial input (or an input stream) is mapped
through a chain of (usually) deterministic
transformations into an output (or an output
stream). The prevalence of multicore plat-
forms doesn’t increase the need for concurrent
programming or make it harder; it increases
the need for parallel programming. We con-
tend that parallel programming is much easier

than concurrent programming; in particular,
it is seldom necessary to use nondeterministic
code.

Figure 2 presents a schematic view of the
parallel software creation process. Developers
often start with a sequential code, although
starting from a high-level specification is pre-
ferred. It’s often possible to identify outer-
loop parallelism where we can encapsulate
all or most of the sequential code logic into
a parallel execution framework (pipeline,
master-slave, and so on) with little or no
change in the sequential code. If this doesn’t
achieve the desired performance, developers
identify compute-intensive kernels, encapsu-
late them into libraries, and tune these libra-
ries to leverage parallelism at a finer grain,
including single-instruction, multiple-data
(SIMD) parallelism. Whereas the production
of carefully tuned parallel libraries will in-
volve performance coding experts, simple,
coarse-level parallelism should be accessible
to all.

We propose helping ‘‘easy parallelism’’ by
developing refactoring tools that let us con-
vert sequential code into parallel code written
using existing parallel frameworks in C# or
Java16 as well as debugging tools that help
identify concurrency bugs.17 More funda-
mentally, we propose supporting simple par-
allelism with languages that are deterministic
by default and concurrency safe.

Languages such as Java and C# provide
safety guarantees (such as type or memory
safety) that significantly reduce the opportu-
nities for hard-to-track bugs and improve
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programmer productivity. We plan to bring
the same benefits to parallel and concurrent
programming; a concurrency safe language
prevents, by design, the occurrence of data
races. As a result, the semantics of concurrent
execution are well-defined, and hard-to-track
bugs are avoided. A deterministic-by-default
language will also ensure that, unless explicit
nondeterministic constructs are used, any
execution of a parallel code will have the
same outcome as a sequential execution.
This significantly reduces the effort of testing
parallel code and facilitates the porting of
sequential code.

Our work on Deterministic Parallel Java
(DPJ)18 shows we can satisfy both properties,
even for modern object-oriented program-
ming, without undue loss of expressiveness
and with good performance. Moreover,
we can enforce the race-free guarantee
with simple, compile-time type checking.
Although such a safe language requires
some initial programming effort, these efforts
are small compared with that of designing
and developing a parallel program and can
be significantly reduced via interactive port-
ing tools.19 Our tool, DPJizer, can infer
much of the added information DPJ
requires. The effort has a large long-term
payoff in terms of greatly improved docu-
mentation, maintainability, and robustness
under future software changes.

The development of high-performance
parallel libraries requires a different environ-
ment that enables programmers to fine-tune
code and facilitates porting to new platforms.
We believe that such work should happen in
an environment where compiler analysis and
code development interact closely so that the
performance programmer works with the
compiler, not against it, as is often the case
today. We’re working on refactoring envi-
ronments where code changes are mostly
annotations that add information not other-
wise available in the source code. The anno-
tation information is extended by advanced
compiler analysis to enable robust deploy-
ment of transformations such as data layout
adjustment and loop tiling transformations.
One particular goal of our Gluon work is
to enable a portable common parallel code
base for both fine-grained engines such as
GPUs and coarser grained multicore CPUs,

as well as their associated memory hierar-
chies. Autotuning by manipulating the algo-
rithm or code is another technique we apply
to this problem.

Parallel libraries are most easily integrated
into sequential code when they follow the
SIMD model. Our work on hierarchical
tiled arrays (HTAs) confirms earlier results
showing that this model can also be used
to support a range of complex applications
with good performance.20 The use of tiles
as a first-class object gives programmers
good control of locality, granularity, and
load balancing.

Integrating parallel libraries and frame-
works into a concurrency-safe programming
environment requires a careful design of inter-
faces to ensure that the safety guarantees are
not violated. We can use simple language fea-
tures as specialized contracts at framework
interfaces to ensure that client code using a
parallel framework (with internal parallelism)
doesn’t violate assumptions made within
the framework implementation. Such an
approach gives an expert framework imple-
menter freedom to use low-level and/or
highly tuned techniques within the frame-
work while enforcing a safety net for less ex-
pert application programmers using the
framework. The expert framework implemen-
tation can be subject to extensive testing and
analysis techniques, including proofs of con-
currency safety using manual annotations.

Architecture
The continued scaling of feature sizes will

enable systems with hundreds of conven-
tional cores, and possibly thousands of light-
weight cores, within a decade. Current cache
coherence protocols don’t scale to such num-
bers. With current protocols, each shared
memory access by a core is considered to
be a potential communication or synchroni-
zation with any other core. In fact, parallel
programs communicate and synchronize in
stylized ways. A key to shared memory scal-
ing is adjusting coherence protocols to lever-
age the prevalent structure of shared memory
codes for performance.

We’re exploring three approaches to do
so. The Bulk Architecture is executing coher-
ence operations in bulk, committing large
groups of loads and stores at a time.21
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In this architecture, memory accesses appear
to interleave in a total order, even in the pres-
ence of data races—which helps software
debugging and productivity—while the per-
formance is high through aggressive reorder-
ing of loads and stores within each group.
The DeNovo architecture codesigns the
hardware with concurrency-safe program-
ming models, resulting in a much simplified
and scalable coherence protocol.22 The Rigel
architecture plans to shift more coherence
activities to software.23 In addition, a higher-
level view of communication and synchroniza-
tion across threads enables the architecture to
help program development, for example, by
supporting deterministic replay of parallel
programs or by tracking races in codes that
don’t prevent them by design.24

Stanford University PPL
In May 2008, Stanford University offi-

cially launched the Pervasive Parallelism Lab-
oratory. PPL’s goal is to make parallelism
accessible to average software developers so
that it can be freely used in all computation-
ally demanding applications. The PPL pools
the efforts of many leading Stanford com-
puter scientists and electrical engineers with
support from Sun Microsystems, NVIDIA,
IBM, Advanced Micro Devices, Intel,
NEC, and Hewlett-Packard under an open
industrial affiliates program. The lab’s open
nature lets other companies join the effort
and doesn’t provide any member company
with exclusive intellectual property rights to
the research results.

PPL approach
A fundamental premise of the PPL is that

parallel computing hardware will be hetero-
geneous. This is already true today; personal
computer systems currently shipping consist
of a chip multiprocessor and a highly data-
parallel GPU coprocessor. Large clusters of
such nodes have already been deployed and
most future high-performance computing
environments will contain GPUs. To fully
leverage the computational capabilities of
these systems, an application developer
must contend with multiple, sometimes in-
compatible, programming models. Shared
memory multiprocessors are generally pro-
grammed using threads and locks (such as

pthreads and OpenMP), while GPUs are
programmed using data-parallel languages
(such as CUDA and OpenCL), and commu-
nication between the nodes in a cluster is
programmed with a message passing library
(such as MPI). Heterogeneous hardware sys-
tems are driven by the desire to improve
hardware productivity, measured by perfor-
mance per watt and per dollar. This desire
will continue to drive even greater hardware
heterogeneity that will include special-
purpose processing units.

As the degree of hardware heterogeneity
increases, developing software for these sys-
tems will become even more complex. Our
hypothesis is that the only way to radically
simplify the process of developing parallel
applications and improve programmer pro-
ductivity, measured by programmer effort
required for a given level of performance, is
to use very-high-level domain-specific pro-
gramming languages and environments.
These environments will capture parallelism
implicitly and will optimize and map this
parallelism to heterogeneous hardware using
domain-specific knowledge.

Thus, our vision for the future of parallel
application programming is to replace a dis-
parate collection of programming models,
which require specialized architecture knowl-
edge, with domain-specific languages that
match application developer knowledge and
understanding.

PPL research agenda
To drive PPL research, we are developing

new applications in areas that have the
potential to exploit significant amounts of
parallelism but also present significant soft-
ware development challenges. These applica-
tion areas demand enormous amounts of
computing power to process large amounts
of information, often in real time. They in-
clude traditional scientific and engineering
applications from geosciences, mechanical
engineering, and bioengineering; a massive
virtual world including a client-side game
engine and a scalable world server; personal
robotics including autonomous driving
vehicles and robots that can navigate home
and office environments; and sophisticated
data-analysis applications that can extract in-
formation from huge amounts of data.
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These applications will be developed by
domain experts in collaboration with PPL
researchers.

The core of our research agenda is to
allow a domain expert to develop parallel
software without becoming an expert in par-
allel programming. Our approach is to use a
layered system (Figure 3) based on implicitly
parallel domain-specific languages (DSLs), a
domain embedding language, a common
parallel runtime system, and a heterogeneous
architecture that provides efficient mecha-
nisms for communication, synchronization,
and performance monitoring.

We expect that most programming of
future parallel systems will be done in
DSLs at the abstraction level of Matlab or
SQL. DSLs enable the average programmer
to be highly productive in writing parallel
programs by isolating the programmer from
the details of parallelism, synchronization,
and locality. The use of DSLs also recognizes
that most applications aren’t written from
scratch, but rather built by combining exist-
ing systems and libraries.25 The DSL envi-
ronment uses its high-level view of the
computation and its domain knowledge to
direct placement and scheduling to optimize

parallel execution. Our goal is to build the
underlying technology that makes it easy to
create implicitly parallel DSLs and design
and implement at least three specific lan-
guages using this technology to demonstrate
that it can support multiple DSLs. To sup-
port science and engineering applications,
we’re developing a mesh-based PDE DSL
called Liszt and a physics DSL that is based
on the physics simulation library PhysBAM,
which has been extensively used in biome-
chanics, virtual surgery, and visual special
effects. To support the many algorithms in
robotics and data informatics that are based
on machine learning, we’re developing a
machine-learning DSL called OptiML.
Finally, we’re using the Scala programming
language to serve as the language used for
embedding the DSLs.26 Scala integrates key
features of object-oriented and functional
languages, and Scala’s extensibility makes it
possible to define new DSLs naturally.

Our common parallel runtime system
(CPR), called Delite, supports both implicit
task-level parallelism for generality and
explicit data-level parallelism for efficiency.
The CPR maps the parallelism extracted
from a DSL-based application to
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heterogeneous architectures and manages the
allocation and scheduling of processing and
memory resources. The mapping process
begins with a task graph, which exposes
task- and data-level parallelism and retains
the high-level domain knowledge expressed
by the DSL. This domain knowledge is
used to optimize the graph by reducing the
total amount of work and by exposing
more parallelism. The CPR scheduler uses
this task graph to reason about large portions
of the program and make allocation and
scheduling decisions that reduce communi-
cation and improve locality of data access.
Each node of the task graph can have multi-
ple implementations that target different
architectures, which supports heterogeneous
parallelism.

To support the CPR, we’re developing a
set of architecture mechanisms that provide
communication and synchronization with
low overhead. Such mechanisms will support
both efficient fine-grained exploitation of
parallelism to get many processors working
together on a fixed-size data set and coarse-
grained parallelism to gain efficiency through
bulk operations. A key challenge is the design
of a memory hierarchy that simultaneously
supports both implicit reactive mechanisms
(caching with coherence and transactions)
and explicit proactive mechanisms (explicit
staging of data to local memory). Our goal
is to develop a simple set of mechanisms
that is general enough to support execution
models ranging from speculative threads
(to support legacy codes) to streaming (to
support explicitly scheduled data-parallel
DSLs).27 To evaluate these architecture
mechanisms with full-size applications at
hardware speeds, we’re using a prototyping
system called the Flexible Architecture
Research Machine. FARM tightly couples
commodity processors chips for performance
with FPGA chips for flexibility, using a
cache-coherent shared address space.

Liszt
Liszt is a domain-specific programming

environment developed in Scala for imple-
menting PDE solvers on unstructured
meshes for hypersonic fluid simulation. It
abstracts the representation of the common
objects and operations used in flow

simulation. Because 3D vectors are common
in physical simulation, Liszt implements
them as objects with common methods for
dot and cross products. In addition, Liszt
completely abstracts the mesh data structure,
performing all mesh access through standard
interfaces. Field variables are associated with
topological elements such as cells, faces,
edges, and vertices, but they are accessed
through methods so their representation is
not exposed. Finally, sparse matrices are
indexed by topological elements, not inte-
gers. This code appeals to computational sci-
entists because it is written in a form they
understand. It also appeals to computer sci-
entists because it hides the details of the
machine.

One key to good parallel performance is
good memory locality, and the choice of
data structure representation and data decom-
position can have an enormous impact on
locality. The use of DSLs and domain
knowledge make it possible to pick the data
structure that best fits the characteristics of
the architecture. The DSL compiler for
Liszt, for example, knows what a mesh, a
cell, and a face are. As a result, the compiler
has the information needed to select the
data structure representations, data decompo-
sition, and the layout of field variables that
are optimized for a specific architecture.
Using this domain-specific approach, it is
possible to generate a special version of
the code for a given mesh running on a
given architecture. No general-purpose com-
piler could possibly do this type of super-
optimization.

Delite
Delite’s layered approach to parallel het-

erogeneous programming hides the complex-
ity of the underlying machine behind a
collection of DSLs. The use of DSLs creates
two types of programmers: application devel-
opers, who use DSLs and are shielded from
parallel or heterogeneous programming con-
structs (Figure 4a); and DSL developers, who
use the Delite framework to implement a
DSL. The DSL developer defines the map-
ping of DSL methods into domain-specific
units of execution called OPs. OPs hold
the implementation of a particular domain-
specific operation and other information

[3B2-14] mmi2010020041.3d 30/3/010 12:34 Page 51

....................................................................

MARCH/APRIL 2010 51



needed by the runtime for efficient parallel
execution (operation cost, possible side
effects, and so on). OPs also encode any
dependencies on data objects or existing OPs.

When an application calls a DSL method,
an OP is submitted to the Delite runtime
through a defer method and receives a
proxy in return (Figure 4b). The application
is oblivious to the fact that computation has
been deferred and runs ahead, allowing more
OPs to be submitted. These OPs form a dy-
namic task graph that can then be scheduled
to run in parallel, if independent (Figure 4c).
Multiple variants of each OP in the domain-
specific language can be generated to target
different available parallel architectures
(Figure 4d). As new architectures emerge,
Delite can be enhanced to generate code for
these new architectures. The application
doesn’t need to be rewritten to benefit from
these new architectures, and unless the DSL
interface changes, the application need not
even be recompiled.

Delite can be used to extract and optimize
both task- and data-level parallelism for sev-
eral machine-learning kernels written in
OptiML. Our results show significant

potential for this approach to uncover large
amounts of parallelism from applications
written using a Delite DSL. Future work
will demonstrate how the Delite infrastruc-
ture can be used to target a heterogeneous
parallel architecture composed of multicores
and GPUs and interface with more special-
ized parallel runtimes that we are developing
such as Sequoia28 (divide and conquer) and
GRAMPS29 (producer/consumer).

T he stagnation in uniprocessor perfor-
mance and the shift to multicore

architectures is a technological discontinuity
that will force major changes in the IT
industry. The three centers are proud of the
opportunity given to them to have a major
role in driving this change and humbled by
the magnitude of the task. MICRO

Acknowledgments
UC Berkeley ParLab research is spon-

sored by the Universal Parallel Computing
Research Center, which is funded by Intel
and Microsoft (award no. 20080469) and
by matching funds from UC Discovery
(award no. DIG07-10227). Additional

[3B2-14] mmi2010020041.3d 30/3/010 12:34 Page 52

Application
def example(a: Matrix[Int],

b: Matrix[Int], 
c: Matrix[Int],
d: Matrix[Int]) =

{

val ab = a * b
val cd = c * d    
return ab + cd

}

Calls matrix
DSL methods

def *(m: Matrix[Int]) =
delite.defer(OP_mult(this, m))

def +(m: Matrix[Int]) =
delite.defer(OP_plus(this, m))

Matrix DSL

DSL defers OP
execution to Delite 

Hardware schedule

D
ev

ic
e

Time

(c)

(a)

(d)

(b)

0

1

Delite maps DAG
to resources 

a b

c

Delite runtime

+

d

Figure 4. Delite example application execution overview. Delite simplifies parallel

programming using implicitly parallel DSLs.

....................................................................

52 IEEE MICRO

...............................................................................................................................................................................................
HOT CHIPS



support comes from six ParLab affiliate com-
panies: National Instruments, NEC, Nokia,
NVIDIA, Samsung, and Sun Microsystems.
UPCRC-Illinois is funded by Intel and
Microsoft and by matching funds from the
University of Illinois. Stanford PPL is funded
by Sun Microsystems, NVIDIA, IBM,
Advanced Micro Devices, Intel, and NEC.

....................................................................
References
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