
Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, Jie Chen, Jingdong Chen, Zhijie Chen,
Mike Chrzanowski, Adam Coates, Greg Diamos, Ke Ding, Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang,
Linxi Fan, Christopher Fougner, Liang Gao, Caixia Gong, Awni Hannun, Tony Han, Lappi Vaino Johannes,
Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li,
Dongpeng Ma, Sharan Narang, Andrew Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian,
Zongfeng Quan, Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David Seetapun, Shubho Sengupta,
Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang, Chong Wang, Jidong Wang, Kaifu Wang, Yi Wang,
Zhijian Wang, Zhiqian Wang, Shuang Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan,
Jun Zhan, Zhenyao Zhu
Baidu Silicon Valley AI Lab

1

, 1195 Bordeaux Avenue, Sunnyvale CA 94086 USA

Baidu Speech Technology Group, No. 10 Xibeiwang East Street, Ke Ji Yuan, Haidian District, Beijing 100193 CHINA

Abstract

We show that an end-to-end deep learning ap-

proach can be used to recognize either English

or Mandarin Chinese speech–two vastly different

languages. Because it replaces entire pipelines

of hand-engineered components with neural net-

works, end-to-end learning allows us to han-

dle a diverse variety of speech including noisy

environments, accents and different languages.

Key to our approach is our application of HPC

techniques, enabling experiments that previously

took weeks to now run in days. This allows us

to iterate more quickly to identify superior archi-

tectures and algorithms. As a result, in several

cases, our system is competitive with the tran-

scription of human workers when benchmarked

on standard datasets. Finally, using a technique

called Batch Dispatch with GPUs in the data cen-

ter, we show that our system can be inexpen-

sively deployed in an online setting, delivering

low latency when serving users at scale.

1. Introduction

Decades worth of hand-engineered domain knowledge has

gone into current state-of-the-art automatic speech recogni-

tion (ASR) pipelines. A simple but powerful alternative so-

lution is to train such ASR models end-to-end, using deep

1

Contact author: sanjeevsatheesh@baidu.com

Proceedings of the33rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume

48. Copyright 2016 by the author(s).

learning to replace most modules with a single model as

in (Hannun et al., 2014a) and (Graves & Jaitly, 2014b).

This "end to end" vision of training simplyfies the train-

ing process by removing the engineering required for the

bootstrapping/alignment/clustering/HMM machinery often

used to build state-of-the-art ASR models. On such a sys-

tem, built on end-to-end deep learning, we can employ a

range of deep learning techniques: capturing large training

sets, training larger models with high performance com-

puting, and methodically exploring the space of neural net-

work architectures.

This paper details our contribution to the model archi-

tecture, large labeled training datasets, and computational

scale for speech recognition. This includes an extensive in-

vestigation of model architectures, and our data capturing

pipeline that has enabled us to create larger datasets than

what is typically used to train speech recognition systems.

We benchmark our system on several publicly available test

sets with a goal of eventually attaining human-level perfor-

mance. To that end, we have also measured the perfor-

mance of crowd workers on each benchmark for compari-

son. We find that our best Mandarin Chinese speech system

transcribes short voice-query like utterances better than a

typical Mandarin Chinese speaker.

The remainder of the paper is as follows. We begin with a

review of related work in deep learning, end-to-end speech

recognition, and scalability in Section 2. Section 3 de-

scribes the architectural and algorithmic improvements to

the model and Section 4 explains how to efficiently com-

pute them. We discuss the training data and steps taken to

further augment the training set in Section 5. An analysis

of results for our system in English and Mandarin is pre-

sented in Section 6. We end with a description of the steps

needed to deploy our system to real users in Section 7.

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

2. Related Work

This work is inspired by previous work in both deep learn-

ing and speech recognition. Feed-forward neural net-

work acoustic models were explored more than 20 years

ago (Bourlard & Morgan, 1993; Renals et al., 1994). Re-

current neural networks and networks with convolution

were also used in speech recognition around the same

time (Robinson et al., 1996; Waibel et al., 1989). More

recently DNNs have become a fixture in the ASR pipeline

with almost all state of the art speech work containing some

form of deep neural network (Mohamed et al., 2011; Hin-

ton et al., 2012; Dahl et al., 2011; N. Jaitly & Vanhoucke,

2012; Seide et al., 2011). Convolutional networks have also

been found beneficial for acoustic models (Abdel-Hamid

et al., 2012; Sainath et al., 2013). Recurrent neural net-

works are beginning to be deployed in state-of-the art rec-

ognizers (Graves et al., 2013; H. Sak et al., 2014) and

work well with convolutional layers for the feature extrac-

tion (Sainath et al., 2015).

End-to-end speech recognition is an active area of re-

search, showing compelling results when used to re-

score the outputs of a DNN-HMM (Graves & Jaitly,

2014a) and standalone (Hannun et al., 2014a). The RNN

encoder-decoder with attention performs well in predict-

ing phonemes (Chorowski et al., 2015) or graphemes (Bah-

danau et al., 2015; Chan et al., 2015). The CTC loss

function (Graves et al., 2006) coupled with an RNN to

model temporal information also performs well in end-

to-end speech recognition with character outputs (Graves

& Jaitly, 2014a; Hannun et al., 2014b;a; Maas et al.,

2015). The CTC-RNN model also works well in predicting

phonemes (Miao et al., 2015; Sak et al., 2015), though a

lexicon is still needed in this case.

Exploiting scale in deep learning has been central to the

success of the field thus far (Krizhevsky et al., 2012; Le

et al., 2012). Training on a single GPU resulted in substan-

tial performance gains (Raina et al., 2009), which were sub-

sequently scaled linearly to two (Krizhevsky et al., 2012)

or more GPUs (Coates et al., 2013). We take advantage of

work in increasing individual GPU efficiency for low-level

deep learning primitives (Chetlur et al.). We built on the

past work in using model-parallelism (Coates et al., 2013),

data-parallelism (Dean et al., 2012) or a combination of the

two (Szegedy et al., 2014; Hannun et al., 2014a) to create a

fast and highly scalable system for training deep RNNs in

speech recognition.

Data has also been central to the success of end-to-end

speech recognition, with over 7000 hours of labeled speech

used in (Hannun et al., 2014a). Data augmentation has

been highly effective in improving the performance of deep

learning in computer vision (LeCun et al., 2004; Sapp et al.,

2008; Coates et al., 2011) and speech recognition (Gales

CTC

Spectrogram

1D or 2D
Invariant

Convolution

Fully
Connected

Batch
Normalization

Lookahead
Convolution

Vanilla or GRU
 Uni or Bi
directional

RNN

Figure 1: Architecture of the deep RNN used in both En-

glish and Mandarin speech.

et al., 2009; Hannun et al., 2014a). Existing speech systems

can also be used to bootstrap new data collection. For ex-

ample, an existing speech engine can be used to align and

filter thousands of hours of audiobooks (Panayotov et al.,

2015). We draw inspiration from these past approaches in

bootstrapping larger datasets and data augmentation to in-

crease the effective amount of labeled data for our system.

3. Model Architecture

Figure 1 shows the wireframe of our architecture, and lays

out the swappable components which we explore in de-

tail in this paper. Our system (similar at its core to the

one in (Hannun et al., 2014a)), is a recurrent neural net-

work (RNN) with one or more convolutional input layers,

followed by multiple recurrent (uni or bidirectional) lay-

ers and one fully connected layer before a softmax layer.

The network is trained end-to-end using the CTC loss func-

tion (Graves et al., 2006), which allows us to directly pre-

dict the sequences of characters from input audio.

2

The inputs to the network are a sequence of log-

spectrograms of power normalized audio clips, calculated

on 20ms windows. The outputs are the alphabet of each

language. At each output time-step t, the RNN makes a

prediction, p(`

t

|x), where `

t

is either a character in the

alphabet or the blank symbol. In English we have `

t

2
{a, b, c, . . . , z, space, apostrophe, blank}, where we have

added the spacesymbol to denote word boundaries. For

the Mandarin system the network outputs simplified Chi-

2

Most of our experiments use bidirectional recurrent lay-

ers with clipped rectified-linear units (ReLU) �(x) =

min{max{x, 0}, 20} as the activation function.

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

Architecture Baseline BatchNorm GRU

5-layer, 1 RNN 13.55 14.40 10.53

5-layer, 3 RNN 11.61 10.56 8.00

7-layer, 5 RNN 10.77 9.78 7.79
9-layer, 7 RNN 10.83 9.52 8.19

9-layer, 7 RNN

no SortaGrad 11.96 9.78

Table 1: Comparison of WER on a development set as we

vary depth of RNN, application of BatchNorm and Sorta-

Grad, and type of recurrent hidden unit. All networks have

38M parameters—as depth increases, the number of hidden

units per layer decreases. The last two columns compare

the performance of the model on the dev set as we change

the type of the recurrent hidden unit.

nese characters.

At inference time, CTC models are paired a with language

model trained on a bigger corpus of text. We use a special-

ized beam search (Hannun et al., 2014b) to find the tran-

scription y that maximizes

Q(y) = log(p

RNN

(y|x)) + ↵ log(p

LM

(y)) + �wc(y) (1)

where wc(y) is the number of words (English) or charac-

ters (Chinese) in the transcription y. The weight ↵ con-

trols the relative contributions of the language model and

the CTC network. The weight � encourages more words in

the transcription. These parameters are tuned on a held out

development set.

3.1. Batch Normalization for Deep RNNs

To efficiently absorb data as we scale the training set, we

increase the depth of the networks by adding more recur-

rent layers. However, it becomes more challenging to train

networks using gradient descent as the size and depth in-

creases. We have experimented with the Batch Normaliza-

tion (BatchNorm) method to train deeper nets faster (Ioffe

& Szegedy, 2015). Recent research has shown that Batch-

Norm can speed convergence of RNNs training, though

not always improving generalization error (Laurent et al.,

2015). In contrast, we find that when applied to very deep

networks of RNNs on large data sets, the variant of Batch-

Norm we use substantially improves final generalization er-

ror in addition to accelerating training.

A recurrent layer is implemented as

h

l

t

= f(W

l

h

l�1
t

+ U

l

h

l

t�1 + b). (2)

where the activations of layer l at time step t are computed

by combining the activations from the previous layer h

l�1
t

at the same time step t and the activations from the current

layer at the previous time step h

l

t�1.

50 100 150 200 250 300

Iteration (⇥103)

20

30

40

50

60

C
os

t

5-1 BN
5-1 No BN
9-7 BN
9-7 No BN

Figure 2: Training curves of two models trained with and

without BatchNorm (BN). We see a wider gap in perfor-

mance on the deeper 9-7 network (which has 9 layers in

total, 7 of which are vanilla bidirectional RNNs) than the

shallower 5-1 network (in which only 1 of the 5 layers is

a bidirectional RNN). We start the plot after the first epoch

of training as the curve is more difficult to interpret due to

the SortaGrad curriculum method mentioned in Section 3.2

As in (Laurent et al., 2015), there are two ways of applying

BatchNorm to the recurrent operation. A natural extension

is to insert a BatchNorm transformation, B(·), immediately

before every non-linearity as follows:

h

l

t

= f(B(W l

h

l�1
t

+ U

l

h

l

t�1)). (3)

In this case the mean and variance statistics are accumu-

lated over a single time-step of the minibatch. We did not

find this to be effective.

An alternative (sequence-wisenormalization) is to batch

normalize only the vertical connections. The recurrent

computation is given by

h

l

t

= f(B(W l

h

l�1
t

) + U

l

h

l

t�1). (4)

For each hidden unit we compute the mean and variance

statistics over all items in the minibatch over the length

of the sequence. Figure 2 shows that deep networks con-

verge faster with sequence-wise normalization. Table 1

shows that the performance improvement from sequence-

wise normalization increases with the depth of the network,

with a 12% performance difference for the deepest net-

work. We store a running average of the mean and variance

for the neuron collected during training, and use these for

evaluation (Ioffe & Szegedy, 2015).

3.2. SortaGrad

Even with Batch Normalization, we find training with CTC

to be occasionally unstable, particularly in the early stages.

In order to make training more stable, we experiment with

a training curriculum (Bengio et al., 2009; Zaremba &

Sutskever, 2014), which accelerates training and results in

better generalization as well.

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

Training very deep networks (or RNNs with many steps)

from scratch can fail early in training since outputs and

gradients must be propagated through many poorly tuned

layers of weights. In addition to exploding gradients (Pas-

canu et al., 2012), CTC often ends up assigning near-zero

probability to very long transcriptions making gradient de-

scent quite volatile. This observation motivates a curricu-

lum learning strategy we title SortaGrad: we use the length

of the utterance as a heuristic for difficulty and train on the

shorter (easier) utterances first.

Specifically, in the first training epoch we iterate through

minibatches in the training set in increasing order of the

length of the longest utterance in the minibatch. After the

first epoch training reverts back to a random order over

minibatches. Table 1 shows a comparison of training cost

with and without SortaGrad on the 9 layer model with 7

recurrent layers. SortaGrad improves the stability of train-

ing, and this effect is particularly pronounced in networks

without BatchNorm, since these are even less numerically

stable.

3.3. Comparison of vanilla RNNs and GRUs

The models we have shown so far are vanilla RNNs which

are modeled by Equation 3 with ReLU activations. More

sophisticated hidden units such as the Long Short-Term

Memory (LSTM) units (Hochreiter & Schmidhuber, 1997)

and the Gated Recurrent Units (GRU) (Cho et al., 2014),

have been shown to be very effective on similar tasks (Bah-

danau et al., 2015). We examine GRUs because experi-

ments on smaller data sets show the GRU and LSTM reach

similar accuracy for the same number of parameters, but

the GRUs are faster to train and less likely to diverge.

Both GRU and vanilla RNN architectures benefit from

BatchNorm and show strong results with deep networks.

The last two columns in table 1 show that for a fixed num-

ber of parameters the GRU architecture achieves better

WER for all network depths.

3.4. Frequency Convolutions

Temporal convolution is commonly used in speech recog-

nition to efficiently model temporal translation invariance

for variable length utterances. Convolution in frequency at-

tempts to model spectral variance due to speaker variability

more concisely than what is possible with large fully con-

nected networks.

We experiment with adding between one and three layers of

convolution. These are both in the time-and-frequency do-

main (2D) and in the time-only domain (1D). In all cases

we use a “same” convolution. In some cases we specify

a stride (subsampling) across either dimension which re-

duces the size of the output.

Recurrent layer

Row conv layer

h

t

h

t+1 ht +2 h

t+3

r
t+3r t +2r t +1r

t

Figure 3: Lookahead convolution architecture with future

context size of 2.

We report results on two datasets—a development set

of 2048 utterances (“Regular Dev”) and a much noisier

dataset of 2048 utterances (“Noisy Dev”) randomly sam-

pled from the CHiME 2015 development datasets (Barker

et al., 2015). We find that multiple layers of 1D convolu-

tion provides a very small benefit. The 2D convolutions

improve results substantially on noisy data, while provid-

ing a small benefit on clean data. The change from one

layer of 1D convolution to three layers of 2D convolution

improves WER by 23.9% on the noisy development set.

3.5. Lookahead Convolution and Unidirectional
Models

Bidirectional RNN models are challenging to deploy in an

online, low-latency setting because they cannot stream the

transcription process as the utterance arrives from the user.

However, models with only forward recurrences routinely

perform worse than similar bidirectional models, imply-

ing some amount of future context is vital to good perfor-

mance. One possible solution is to delay the system from

emitting a label until it has more context as in (Sak et al.,

2015), but we found it difficult to induce this behavior in

our models. In order to build a unidirectional model with-

out any loss in accuracy, we develop a special layer that we

call lookahead convolution, shown in Figure 3. The layer

learns weights to linearly combine each neuron’s activa-

tions ⌧ timesteps into the future, and thus allows us to con-

trol the amount of future context needed. The lookahead

layer is defined by a parameter matrix W 2 R(d,⌧)
, where

d matches the number of neurons in the previous layer. The

activations r

t

for the new layer at time-step t are

r

t,i =

⌧+1!

j=1

W

i,jht+j�1,i, for 1  i  d. (5)

We place the lookahead convolution above all recurrent

layers. This allows us to stream all computation below the

lookahead convolution on a finer granularity.

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

Architecture Channels Filter dimension Stride Regular Dev Noisy Dev

1-layer 1D 1280 11 2 9.52 19.36

2-layer 1D 640, 640 5, 5 1, 2 9.67 19.21

3-layer 1D 512, 512, 512 5, 5, 5 1, 1, 2 9.20 20.22

1-layer 2D 32 41x11 2x2 8.94 16.22

2-layer 2D 32, 32 41x11, 21x11 2x2, 2x1 9.06 15.71

3-layer 2D 32, 32, 96 41x11, 21x11, 21x11 2x2, 2x1, 2x1 8.61 14.74

Table 2: Comparison of WER for different configurations of convolutional layers. In all cases, the convolutions are

followed by 7 recurrent layers and 1 fully connected layer. For 2D convolutions the first dimension is frequency and the

second dimension is time. Each model is trained with BatchNorm, SortaGrad, and has 35M parameters.

3.6. Adaptation to Mandarin

To port a traditional speech recognition pipeline to another

language typically requires a significant amount of new

language-specific development. For example, one often

needs to hand-engineer a pronunciation model (Shan et al.,

2010). We may also need to explicitly model language-

specific pronunciation features, such as tones in Man-

darin (Shan et al., 2010; Niu et al., 2013). Since our end-

to-end system directly predicts characters, these time con-

suming efforts are no longer needed. This has enabled us

to quickly create an end-to-end Mandarin speech recogni-

tion system (that outputs Chinese characters) using the ap-

proach described above with only a few changes.

The only architectural changes we make to our networks

are due to the characteristics of the Chinese character set.

The network outputs probabilities for about 6000 char-

acters, which includes the Roman alphabet, since hybrid

Chinese-English transcripts are common. We incur an out

of vocabulary error at evaluation time if a character is not

contained in this set. This is not a major concern, as our

test set has only 0.74% out of vocab characters.

We use a character level language model in Mandarin as

words are not usually segmented in text. In Section 6.2 we

show that our Mandarin speech models show roughly the

same improvements to architectural changes as our English

speech models, suggesting that modeling knowledge from

development in one language transfers well to others.

4. System Optimizations

Our networks have tens of millions of parameters, and a

training experiment involves tens of single-precision ex-

aFLOPs. Since our ability to evaluate hypotheses about

our data and models depends on training speed, we created

a highly optimized training system based on high perfor-

mance computing (HPC) infrastructure.

3

Although many

frameworks exist for training deep networks on parallel

3

Our software runs on dense compute nodes with 8 NVIDIA

Titan X GPUs per node with a theoretical peak throughput of 48

single-precision TFLOP/s.

machines, we have found that our ability to scale well is of-

ten bottlenecked by unoptimized routines that are taken for

granted. Therefore, we focus on careful optimization of the

most important routines used for training. Specifically, we

created customized All-Reduce code for OpenMPI to sum

gradients across GPUs on multiple nodes, developed a fast

implementation of CTC for GPUs, and use custom mem-

ory allocators. Taken together, these techniques enable us

to sustain overall 45% of theoretical peak performance on

each node.

Our training distributes work over multiple GPUs in a data-

parallel fashion with synchronous SGD, where each GPU

uses a local copy of the model to work on a portion of

the current minibatch and then exchanges computed gra-

dients with all other GPUs. We prefer synchronous SGD

because it is reproducible, which facilitates discovering

and fixing regressions. In this setup, however, the GPUs

must communicate quickly (using an "All-Reduce" opera-

tion) at each iteration in order to avoid wasting computa-

tional cycles. Prior work has used asynchronous updates to

mitigate this issue (Dean et al., 2012; Recht et al., 2011).

We instead focused on optimizing the All-Reduce opera-

tion itself, achieving a 4x-21x speedup using techniques

to reduce CPU-GPU communication for our specific work-

loads. Similarly, to enhance overall computation, we have

used highly-optimized kernels from Nervana Systems and

NVIDIA that are tuned for our deep learning applications.

We similarly discovered that custom memory allocation

routines were crucial to maximizing performance as they

reduce the number of synchronizations between GPU and

CPU.

We also found that the CTC cost computation accounted

for a significant fraction of running time. Since no public

well-optimized code for CTC existed, we developed a fast

GPU implementation that reduced overall training time by

10-20%.

4

4

Details of our CTC implementation will be made available

along with open source code.

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

5. Training Data

Large-scale deep learning systems require an abundance of

labeled training data. For training our English model, we

use 11,940 hours of labeled speech containing 8 million

utterances, and the Mandarin system uses 9,400 hours of

labeled speech containing 11 million utterances.

5.1. Dataset Construction

Parts of the English and Mandarin datasets were created

from raw data captured as long audio clips with noisy tran-

scriptions. In order to segment the audio into several sec-

ond long clips, we align the speech with the transcript. For

a given audio-transcript pair (x, y), the most likely align-

ment is calculated as

`

⇤
= argmax

`2Align(x,y)

T"

t

p

ctc

(`

t

|x; ✓). (6)

This is essentially a Viterbi alignment found using a RNN

model trained with CTC. Since the CTC loss function inte-

grates over all alignments, this is not guaranteed to produce

an accurate alignment. However, we found that this ap-

proach produces an accurate alignment when using a bidi-

rectional RNN.

In order to filter out clips with poor transcriptions, we build

a simple classifier with the following features: the raw CTC

cost, the CTC cost normalized by the sequence length, the

CTC cost normalized by the transcript length, the ratio of

the sequence length to the transcript length, the number of

words in the transcription and the number of characters in

the transcription. We crowd source the labels for building

this dataset. For the English dataset, we find that the fil-

tering pipeline reduces the WER from 17% to 5% while

retaining more than 50% of the examples.

Additionally, we dynamically augment the dataset by

adding unique noise every epoch with an SNR between

0dB and 30dB, just as in (Hannun et al., 2014a; Sainath

et al., 2015).

5.2. Scaling Data

We show the effect of increasing the amount of labeled

training data on WER in Table 3. This is done by ran-

domly sampling the full dataset before training. For each

dataset, the model was trained for up to 20 epochs with

early-stopping based on the error on a held out develop-

ment set to prevent overfitting. The WER decreases by

⇠40% relative for each factor of 10 increase in training set

size. We also observe a consistent gap in WER (⇠60% rel-

ative) between the regular and noisy datasets, implying that

more data benefits both cases equally.

Fraction of Data Hours Regular Dev Noisy Dev

1% 120 29.23 50.97

10% 1200 13.80 22.99

20% 2400 11.65 20.41

50% 6000 9.51 15.90

100% 12000 8.46 13.59

Table 3: Comparison of English WER for Regular and

Noisy development sets on increasing training dataset size.

The model has 9-layers (2 layers of 2D convolution and 7

recurrent layers) with 68M parameters.

6. Results

To better assess the real-world applicability of our speech

system, we evaluate on a wide range of test sets. We use

several publicly available benchmarks and several test sets

collected internally. All models are trained for 20 epochs

on either the full English dataset, or the full Mandarin

dataset described in Section 5. We use stochastic gradient

descent with Nesterov momentum (Sutskever et al., 2013)

along with a minibatch of 512 utterances. If the norm of

the gradient exceeds a threshold of 400, it is rescaled to

400 (Pascanu et al., 2012). The model which performs

the best on a held-out development set during training is

chosen for evaluation. The learning rate is chosen from

[1 ⇥ 10

�4
, 6 ⇥ 10

�4
] to yield fastest convergence and an-

nealed by a constant factor of 1.2 after each epoch. We use

a momentum of 0.99 for all models.

6.1. English

The best English model has 2 layers of 2D convolution,

followed by 3 layers of unidirectional recurrent layers with

2560 GRU cells each, followed by a lookahead convolution

layer with ⌧ = 80, trained with BatchNorm and SortaGrad.

We do not adapt the model to any of the speech conditions

in the test sets. Language model decoding parameters are

set once on a held-out development set.

We report results on several test sets for both our system

and an estimate of human accuracy. We obtain a measure

of human level performance by asking workers from Ama-

zon Mechanical Turk to hand-transcribe all of our test sets.

Crowdsourced workers are not as accurate as dedicated,

trained transcriptionists. For example, (Lippmann, 1997)

find that human transcribers achieve close to 1% WER on

the WSJ-Eval92 set, when they are motivated with extra

reward for getting a lower WER, and automatic typo and

spell corrections, and further reductions in error rates by

using a committee of transcribers.

We employ the following mechanism without rewards and

auto correct as a valid competing "ASR wizard-of-Oz" that

we strive to outperform. Two random workers transcribe

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

Test set Ours Human

R
e
a
d

WSJ eval’92 3.10 5.03

WSJ eval’93 4.42 8.08

LibriSpeech test-clean 5.15 5.83

LibriSpeech test-other 12.73 12.69

A
c
c
e
n

t
e
d

VoxForge American-Canadian 7.94 4.85

VoxForge Commonwealth 14.85 8.15

VoxForge European 18.44 12.76

VoxForge Indian 22.89 22.15

N
o

i
s
y

CHiME eval real 21.59 11.84

CHiME eval sim 42.55 31.33

Table 4: Comparison of WER for our speech system and

crowd-sourced human level performance.

every audio clip, on average about 5 seconds long each.

We then take the better of the two transcriptions for the

final WER calculation. Most workers are based in the

United States, are allowed to listen to the audio clip mul-

tiple times and on average spend 27 seconds per transcrip-

tion. The hand-transcribed results are compared to the ex-

isting ground truth to produce a WER estimate. While the

existing ground truth transcriptions do have some label er-

ror, on most sets it is less than 1%.

6.1.1. BENCHMARK RESULTS

Read speech with high signal-to-noise ratio is arguably the

easiest task in large vocabulary continuous speech recog-

nition. We benchmark our system on two test sets from

the Wall Street Journal (WSJ) corpus of read news arti-

cles and the LibriSpeech corpus constructed from audio

books (Panayotov et al., 2015). Table 4 shows that our sys-

tem outperforms crowd-sourced human workers on 3 out

of 4 test sets.

We also tested our system for robustness to common ac-

cents using the VoxForge (http://www.voxforge.org)

dataset. The set contains speech read by speakers with

many different accents. We group these accents into four

categories: American-Canadian, Indian, Commonwealth

5

and European

6

. We construct a test set from the VoxForge

data with 1024 examples from each accent group for a total

of 4096 examples. Human level performance is still no-

tably better than that of our system for all but the Indian

accent.

Finally, we tested our performance on noisy speech us-

ing the test sets from the recently completed third CHiME

challenge (Barker et al., 2015). This dataset has utterances

5

“Commonwealth” includes British, Irish, South African,

Australian and New Zealand accents.

6

“European” includes countries in Europe without English as

a first language.

from the WSJ test set collected in real noisy environments

and with artificially added noise. Using all 6 channels of

the CHiME audio can provide substantial performance im-

provements (Yoshioka et al., 2015). We use a singlechan-

nel for all our models, since access to multi-channel audio

is not yet pervasive. The gap between our system and hu-

man level performance is larger when the data comes from

a real noisy environment instead of synthetically adding

noise to clean speech.

6.2. Mandarin

In Table 5 we compare several architectures trained on

Mandarin Chinese speech on a development set of 2000

utterances as well as a test set of 1882 examples of noisy

speech. This development set was also used to tune the de-

coding parameters. We see that the deepest model with 2D

convolution and BatchNorm outperforms the shallow RNN

by 48% relative.

Architecture Dev Test

5-layer, 1 RNN 7.13 15.41

5-layer, 3 RNN 6.49 11.85

5-layer, 3 RNN + BatchNorm 6.22 9.39

9-layer, 7 RNN + BatchNorm

+ frequency Convolution 5.81 7.93

Table 5: Comparison of the different RNN architectures.

The development and test sets are internal corpora. Each

model in the table has about 80 million parameters.

Test Human RNN

100 utterances / committee 4.0 3.7

250 utterances / individual 9.7 5.7

Table 6: We benchmark the best Mandarin system against

humans on two randomly selected test sets. The first set has

100 examples and is labelled by a committee of 5 Chinese

speakers. The second has 250 examples and is labelled by

a single human transcriber.

Table 6 shows that our best Mandarin Chinese speech sys-

tem transcribes short voice-query like utterances better than

a typical Mandarin Chinese speaker and a committee of 5

Chinese speakers working together.

7. Deployment

Bidirectional models are not well-designed for real time

transcription: since the RNN has several bidirectional lay-

ers, transcribing an utterance requires the entire utterance

to be presented to the RNN; and since we use a wide beam

search for decoding, beam search can be expensive.

To increase deployment scalability, while still providing

http://www.voxforge.org

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

low latency transcription, we built a batching scheduler

called Batch Dispatch that assembles streams of data from

user requests into batches before performing RNN forward

propagation on these batches. With this scheduler, we can

trade increased batch size, and consequently improved ef-

ficiency, with increased latency.

We use an eager batching scheme that processes each batch

as soon as the previous batch is completed, regardless of

how much work is ready by that point. This scheduling

algorithm balances efficiency and latency, achieving rel-

atively small dynamic batch sizes up to 10 samples per

batch, with median batch size proportional to server load.

Load Median 98%ile

10 streams 44 70

20 streams 48 86

30 streams 67 114

Table 7: Latency distribution (ms) versus load

We see in Table 7 that our system achieves a median la-

tency of 44 ms, and a 98th percentile latency of 70 ms

when loaded with 10 concurrent streams. This server uses

one NVIDIA Quadro K1200 GPU for RNN evaluation. As

designed, Batch Dispatch shifts work to larger batches as

server load grows, keeping latency low.

Our deployment system evaluates RNNs in half-precision

arithmetic, which has no measurable accuracy impact, but

significantly improves efficiency. We wrote our own 16-bit

matrix-matrix multiply routines for this task, substantially

improving throughput for our relatively small batches.

Performing the beam search involves repeated lookups in

the n-gram language model, most of which translate to un-

cached reads from memory. To reduce the cost of these

lookups, we employ a heuristic: only consider the fewest

number of characters whose cumulative probability is at

least p. In practice, we find that p = 0.99 works well,

and additionally we limit the search to 40 characters. This

speeds up the cumulative Mandarin language model lookup

time by a factor of 150x, and has a negligible effect on CER

(0.1-0.3% relative).

7.1. Deep Speech in production environment

Deep Speech has been integrated with a state-of-the-art

production speech pipeline for user applications. We have

found several key challenges that affect the deployment of

end-to-end deep learning methods like ours. First, we have

found that even modest amounts of application-specific

training data is invaluable despite the large quantities of

general speech data used for training. For example, while

we are able to train on more than 10,000 hours of Man-

darin speech, we find that the addition of just 500 hours of

application-specific data can significantly enhance perfor-

mance for the application. Similarly, application-specific

language models are important for achieving top accuracy

and we leverage strong existing n-gram models with our

Deep Speech system. Finally, we note that since our sys-

tem is trained from a wide range of labeled training data

to output characters directly, there are idiosyncratic con-

ventions for transcriptions in each application that must be

handled in post-processing (such as the formatting of dig-

its). Thus, while our model has removed many complexi-

ties, more flexibility and application-awareness for end-to-

end deep learning methods are open areas for further re-

search.

8. Conclusion

End-to-end deep learning presents the exciting opportunity

to improve speech recognition systems continually with in-

creases in data and computation. Since the approach is

highly generic, we have shown that it can quickly be ap-

plied to new languages. Creating high-performing recog-

nizers for two very different languages, English and Man-

darin, required essentially no expert knowledge of the lan-

guages. Finally, we have also shown that this approach

can be efficiently deployed by batching user requests to-

gether on a GPU server, paving the way to deliver end-to-

end Deep Learning technologies to users.

To achieve these results, we have explored various net-

work architectures, finding several effective techniques:

enhancements to numerical optimization through Sorta-

Grad and Batch Normalization, and lookahead convolution

for unidirectional models. This exploration was powered

by a well optimized, high performance computing inspired

training system that allows us to train full-scale models on

our large datasets in just a few days.

Overall, we believe our results confirm and exemplify

the value of end-to-end deep learning methods for speech

recognition in several settings. We believe these techniques

will continue to scale.

References
Abdel-Hamid, Ossama, Mohamed, Abdel-rahman, Jang, Hui, and

Penn, Gerald. Applying convolutional neural networks con-

cepts to hybrid nn-hmm model for speech recognition. In

ICASSP, 2012.

Bahdanau, Dzmitry, Chorowski, Jan, Serdyuk, Dmitriy, Brakel,

Philemon, and Bengio, Yoshua. End-to-end attention-based

large vocabulary speech recognition. abs/1508.04395, 2015.

http://arxiv.org/abs/1508.04395.

Barker, Jon, Marxer, Ricard Vincent, Emmanuel, and Watanabe,

Shinji. The third ’CHiME’ speech separation and recognition

challenge: Dataset, task and baselines. 2015. Submitted to

IEEE 2015 Automatic Speech Recognition and Understanding

Workshop (ASRU).

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

Bengio, Yoshua, Louradour, JérĘome, Collobert, Ronan, and We-

ston, Jason. Curriculum learning. In International Conference
on Machine Learning, 2009.

Bourlard, H. and Morgan, N. Connectionist Speech Recognition:
A Hybrid Approach. Kluwer Academic Publishers, Norwell,

MA, 1993.

Chan, William, Jaitly, Navdeep, Le, Quoc, and Vinyals,

Oriol. Listen, attend, and spell. abs/1508.01211, 2015.

http://arxiv.org/abs/1508.01211.

Chetlur, Sharan, Woolley, Cliff, Vandermersch, Philippe, Cohen,

Jonathan, Tran, John, Catanzaro, Bryan, and Shelhamer, Evan.

cuDNN: Efficient primitives for deep learning. URL http:
//arxiv.org/abs/1410.0759.

Cho, Kyunghyun, Van Merrienboer, Bart, Gulcehre, Caglar,

Bahdanau, Dzmitry, Bougares, Fethi, Schwenk, Holger, and

Bengio, Yoshua. Learning phrase representations using

rnn encoder-decoder for statistical machine translation. In

EMNLP, 2014.

Chorowski, Jan, Bahdanau, Dzmitry, Cho, Kyunghyun, and Ben-

gio, Yoshua. End-to-end continuous speech recognition us-

ing attention-based recurrent nn: First results. abs/1412.1602,

2015. http://arxiv.org/abs/1412.1602.

Coates, Adam, Carpenter, Blake, Case, Carl, Satheesh, Sanjeev,

Suresh, Bipin, Wang, Tao, Wu, David J., and Ng, Andrew Y.

Text detection and character recognition in scene images with

unsupervised feature learning. In International Conference on
Document Analysis and Recognition, 2011.

Coates, Adam, Huval, Brody, Wang, Tao, Wu, David J., Ng, An-

drew Y., and Catanzaro, Bryan. Deep learning with COTS

HPC. In International Conference on Machine Learning, 2013.

Dahl, G.E., Yu, D., Deng, L., and Acero, A. Context-dependent

pre-trained deep neural networks for large vocabulary speech

recognition. IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 2011.

Dean, Jeffrey, Corrado, Greg S., Monga, Rajat, Chen, Kai, Devin,

Matthieu, Le, Quoc, Mao, Mark, Ranzato, Marcâ

˘

A

´

ZAurelio,

Senior, Andrew, Tucker, Paul, Yang, Ke, and Ng, Andrew.

Large scale distributed deep networks. In Advances in Neu-
ral Information Processing Systems 25, 2012.

Gales, M. J. F., Ragni, A., Aldamarki, H., and Gautier, C. Support

vector machines for noise robust ASR. In ASRU, pp. 205–2010,

2009.

Graves, A. and Jaitly, N. Towards end-to-end speech recognition

with recurrent neural networks. In ICML, 2014a.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. Con-

nectionist temporal classification: Labelling unsegmented se-

quence data with recurrent neural networks. In ICML, pp. 369–

376. ACM, 2006.

Graves, Alex and Jaitly, Navdeep. Towards end-to-end speech

recognition with recurrent neural networks. In Proceedings
of the 31st International Conference on Machine Learning
(ICML-14), pp. 1764–1772, 2014b.

Graves, Alex, Mohamed, Abdel-rahman, and Hinton, Geoffrey.

Speech recognition with deep recurrent neural networks. In

ICASSP, 2013.

H. Sak, Hasim, Senior, Andrew, and Beaufays, Francoise. Long

short-term memory recurrent neural network architectures for

large scale acoustic modeling. In Interspeech, 2014.

Hannun, Awni, Case, Carl, Casper, Jared, Catanzaro, Bryan, Di-

amos, Greg, Elsen, Erich, Prenger, Ryan, Satheesh, Sanjeev,

Sengupta, Shubho, Coates, Adam, and Ng, Andrew Y. Deep

speech: Scaling up end-to-end speech recognition. 1412.5567,

2014a. http://arxiv.org/abs/1412.5567.

Hannun, Awni Y., Maas, Andrew L., Jurafsky, Daniel, and

Ng, Andrew Y. First-pass large vocabulary continu-

ous speech recognition using bi-directional recurrent DNNs.

abs/1408.2873, 2014b. http://arxiv.org/abs/1408.2873.

Hinton, G.E., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly,

N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., and

Kingsbury, B. Deep neural networks for acoustic modeling

in speech recognition. IEEE Signal Processing Magazine, 29

(November):82–97, 2012.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term

memory. Neural Computation, 9(8):1735—1780, 1997.

Ioffe, Sergey and Szegedy, Christian. Batch normalization: Ac-

celerating deep network training by reducing internal covariate

shift. abs/1502.03167, 2015. http://arxiv.org/abs/1502.03167.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoff. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems 25, pp.

1106–1114, 2012.

Laurent, Cesar, Pereyra, Gabriel, Brakel, Philemon,

Zhang, Ying, and Bengio, Yoshua. Batch normal-

ized recurrent neural networks. abs/1510.01378, 2015.

http://arxiv.org/abs/1510.01378.

Le, Q.V., Ranzato, M.A., Monga, R., Devin, M., Chen, K., Cor-

rado, G.S., Dean, J., and Ng., A.Y. Building high-level features

using large scale unsupervised learning. In International Con-
ference on Machine Learning, 2012.

LeCun, Yann, Huang, Fu Jie, and Bottou, Léon. Learning meth-

ods for generic object recognition with invariance to pose and

lighting. In Computer Vision and Pattern Recognition, vol-

ume 2, pp. 97–104, 2004.

Lippmann, Richard P. Speech recognition by machines and hu-

mans. Speech communication, 22(1):1–15, 1997.

Maas, Andrew, Xie, Ziang, Jurafsky, Daniel, and Ng, Andrew.

Lexicon-free conversational speech recognition with neural

networks. In NAACL, 2015.

Miao, Yajie, Gowayyed, Mohammad, and Metz, Florian. EESEN:

End-to-end speech recognition using deep rnn models and

wfst-based decoding. In ASRU, 2015.

Mohamed, A., Dahl, G.E., and Hinton, G.E. Acoustic

modeling using deep belief networks. IEEE Transac-
tions on Audio, Speech, and Language Processing, (99),

2011. URL http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=5704567.

N. Jaitly, P. Nguyen, A. Senior and Vanhoucke, V. Application

of pretrained deep neural networks to large vocabulary speech

recognition. In Interspeech, 2012.

http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5704567
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5704567

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

Niu, Jianwei, Xie, Lei, Jia, Lei, and Hu, Na. Context-dependent

deep neural networks for commercial mandarin speech recog-

nition applications. In APSIPA, 2013.

Panayotov, Vassil, Chen, Guoguo, Povey, Daniel, and Khudanpur,

Sanjeev. Librispeech: an asr corpus based on public domain

audio books. In ICASSP, 2015.

Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua. On the

difficulty of training recurrent neural networks. abs/1211.5063,

2012. http://arxiv.org/abs/1211.5063.

Raina, R., Madhavan, A., and Ng, A.Y. Large-scale deep unsuper-

vised learning using graphics processors. In 26th International
Conference on Machine Learning, 2009.

Recht, Benjamin, Re, Christopher, Wright, Stephen, and Niu,

Feng. Hogwild: A lock-free approach to parallelizing stochas-

tic gradient descent. In Advances in Neural Information Pro-
cessing Systems, pp. 693–701, 2011.

Renals, S., Morgan, N., Bourlard, H., Cohen, M., and Franco, H.

Connectionist probability estimators in HMM speech recogni-

tion. IEEE Transactions on Speech and Audio Processing, 2

(1):161–174, 1994.

Robinson, Tony, Hochberg, Mike, and Renals, Steve. The use

of recurrent neural networks in continuous speech recognition.

pp. 253–258, 1996.

Sainath, Tara, Vinyals, Oriol, Senior, Andrew, and Sak, Hasim.

Convolutional, long short-term memory, fully connected deep

neural networks. In ICASSP, 2015.

Sainath, Tara N., rahman Mohamed, Abdel, Kingsbury, Brian,

and Ramabhadran, Bhuvana. Deep convolutional neural net-

works for LVCSR. In ICASSP, 2013.

Sak, Hasim, Senior, Andrew, Rao, Kanishka, and Beaufays, Fran-

coise. Fast and accurate recurrent neural network acous-

tic models for speech recognition. abs/1507.06947, 2015.

http://arxiv.org/abs/1507.06947.

Sapp, Benjaminn, Saxena, Ashutosh, and Ng, Andrew. A fast

data collection and augmentation procedure for object recog-

nition. In AAAI Twenty-Third Conference on ArtiÞcial Intelli-
gence, 2008.

Seide, Frank, Li, Gang, and Yu, Dong. Conversational speech

transcription using context-dependent deep neural networks. In

Interspeech, pp. 437–440, 2011.

Shan, Jiulong, Wu, Genqing, Hu, Zhihong, Tang, Xiliu, Jansche,

Martin, and Moreno, Pedro. Search by voice in mandarin chi-

nese. In Interspeech, 2010.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the impor-

tance of momentum and initialization in deep learning. In 30th
International Conference on Machine Learning, 2013.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet, Pierre,

Reed, Scott, Anguelov, Dragomir, Erhan, Dumitru, Van-

houcke, Vincent, and Rabinovich, Andrew. Going deeper with

convolutions. 2014.

Waibel, Alexander, Hanazawa, Toshiyuki, Hinton, Geoffrey,

Shikano, Kiyohiro, and Lang, Kevin. Phoneme recognition us-

ing time-delay neural networks,â

˘

A

˙

I acoustics speech and sig-

nal processing. IEEE Transactions on Acoustics, Speech and
Signal Processing, 37(3):328–339, 1989.

Yoshioka, T., Ito, N., Delcroix, M., Ogawa, A., Kinoshita, K.,

Yu, M. F. C., Fabian, W. J., Espi, M., Higuchi, T., Araki, S.,

and Nakatani, T. The ntt chime-3 system: Advances in speech

enhancement and recognition for mobile multi-microphone de-

vices. In IEEE ASRU, 2015.

Zaremba, Wojciech and Sutskever, Ilya. Learning to execute.

abs/1410.4615, 2014. http://arxiv.org/abs/1410.4615.

	Introduction
	Related Work
	Model Architecture
	Batch Normalization for Deep RNNs
	SortaGrad
	Comparison of vanilla RNNs and GRUs
	Frequency Convolutions
	Lookahead Convolution and Unidirectional Models
	Adaptation to Mandarin

	System Optimizations
	Training Data
	Dataset Construction
	Scaling Data

	Results
	English
	Benchmark results

	Mandarin

	Deployment
	Deep Speech in production environment

	Conclusion

